СРАВНИТЕЛЬНЫЙ АНАЛИЗ КВАЗИОПТИМАЛЬНЫХ МЕТОДОВ ПРОСТРАНСТВЕННОЙ ОБРАБОТКИ ЧАСТИЧНО-КОГЕРЕНТНОГО СИГНАЛА, ПРИНИМАЕМОГО НА ФОНЕ ИНТЕНСИВНОЙ ПОМЕХИ

А.И. Малеханов ^{1,2)}, **А.В.** Смирнов ¹⁾

1) Институт прикладной физики РАН 2) ННГУ им. Н. И. Лобачевского

Аннотация

В этой работе проводится сравнительный анализ эффективности рассмотренных ранее методов пространственной обработки сигнала (Труды 22-ой научной конференции по радиофизике) на фоне изотропного шума с интенсивной частично-когерентной помехой, описываемой той же двухмасштабной моделью ФПК. Источники сигнала и помехи расположены в разных углах по отношению к центру АР. Показана смена "иерархии" методов обработки в зависимости от совокупности параметров задачи: длины когерентности, величины "остаточной" когерентности, среднего угла пеленга на источники сигнала и помехи, дисперсии флуктуаций углов прихода.

Постановка задачи и основные уравнения

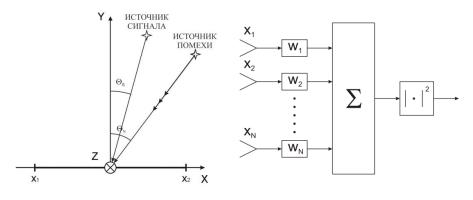
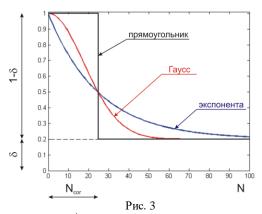


Рис. 1

Ненаправленный удаленный излучатель акустического поля находится под некоторым углом θ_S по отношению к нормали линейной AP. Помимо полезного сигнала приемная AP принимает также изотропный шум (белый шум) и поле интенсивной удаленной помехи размещенной в угле θ_N (Рис. 1). Линейная AP представляет собой эквидистантно расположенный набор (N) из N приемных элементов вдоль прямой линии с межэлементным расстоянием $d=\lambda/2$. Средняя мощность сигнала, белого шума, помехи на входе единичного элемента AP будет соответственно σ_S^2 , σ_{wn}^2 и σ_n^2 . Критерием эффективности метода пространственной обработки является коэффициент усиления антенны G (от англ. "gain" - выигрыш), который определяется как отношение выходного отношения сигнал/шум (ОСШ) на AP к входному ОСШ на отдель-

ном элементе. Универсальное выражение для выигрыша при линейной пространственной обработке (схема на рис. 2) будет записано как:

$$G_0 = \sigma_{\rm s}^{-2} \sigma_{\rm Noise}^2 \frac{{\bf W}^+ {\bf R}_{\rm S} {\bf W}}{{\bf W}^+ {\bf R}_{\rm Noise} {\bf W}^+} \sigma_{\rm Noise}^2 = \sigma_{\rm wn}^2 + \sigma_{\rm n}^2 \tag{1}$$

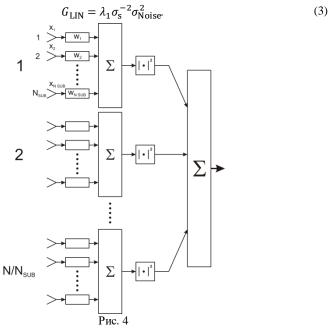


где $R_S = \langle ss^+ \rangle \; (R_{Noise} = \langle nn^+ \rangle)$ — матрица пространственной когерентности сигнального \mathbf{s} (шумового \mathbf{n}) поля на входе AP, \mathbf{W} – весовой вектор, "+" – означает эрмитово сопряжение, $\langle \cdots \rangle$ – означает усреднение по времени. Эффективность стандартной обработки фазированной антенны сильно зависит от угла прихода сигнала θ_{S} и помехи θ_N , угла сканирования θ . Амплитудно-фазовое распределение для стандартной схемы обработки фазированной АР, которая отвечает фазированному накоплению сигнала по элементам, задается в виде распределения поля на антенне, сопряженного полю падающей плоской волны с некоторого угла θ с волновым числом k: $\mathbf{W}(\theta) =$ $\exp\{ikd(N-1)\sin\theta\}$. При дальнем распространении сигнала (помехи) сквозь случайно-неоднородную среду, матрицу пространственной корреляции можно представить как сложение матриц, отвечающих за когерентную и некогерентную компоненту поля на входе AP. Когерентная компонента поля ${f R}_{SC}$ (${f R}_{NC}$) характеризуется уровнем "остаточной" когерентности δ_S (δ_N), зависящим от дальности трассы распространения (аналогия с рассмотренной ранее эвристической экспоненциальной моделью – рис. 3). Считаем, что угол пеленга на излучатель сигнала (помехи) меняется в некотором диапазоне, характеризующийся значением среднего угла прихода θ_{S} (θ_{N}) и дисперсией угла прихода $\sigma_{S\theta}^2$ ($\sigma_{N\theta}^2$). Используя известную модель плоской волны с флуктуирующим углом прихода, получим матрицу когерентности сигнала (помехи) описывающую рассеянную компоненту поля $\mathbf{R}_{\mathrm{SH}}\left(\mathbf{R}_{\mathrm{NH}}\right)$ и полную матрицу когерентности:

$$\begin{aligned} \mathbf{R}_{\mathrm{S}} &= \mathbf{R}_{\mathrm{SC}} + \mathbf{R}_{\mathrm{SH}} = \sigma_{\mathrm{s}}^{2} \delta_{\mathrm{S}} \mathbf{J} \mathbf{G}_{\mathrm{S}}^{+} + \sigma_{\mathrm{s}}^{2} (1 - \delta_{\mathrm{S}}) \mathbf{G}_{\mathrm{s}} \widetilde{\mathbf{K}}_{\mathrm{s}} \mathbf{G}_{\mathrm{s}}^{+}, \\ R_{\mathrm{Noise}} &= R_{\mathrm{WN}} + R_{\mathrm{N}} = \sigma_{\mathrm{WN}}^{2} \mathbf{I} + \mathbf{R}_{\mathrm{NC}} + \mathbf{R}_{\mathrm{NH}}, \\ \widetilde{\mathbf{K}}_{S(\mathrm{N})ij} &= \exp \left\{ - \left(k(i - j) d \sigma_{\mathrm{S(N)}\theta} \cos \theta_{\mathrm{S(N)}} \right)^{2} / 2 \right\}, \end{aligned} \tag{2}$$

где I — единичная матрица, J — матрица единиц, $\mathbf{G}_S(\mathbf{G}_N)$ — диагональная матрица, элементы которой представляют вектор функции Грина $\mathbf{g}_S(\mathbf{g}_N)$, описывающей распространение поля от излучателя до элемента AP $\mathbf{g}_{S(N)} = \exp\{ikd(\mathbf{N}-1)\sin\theta_{S(N)}\}$.

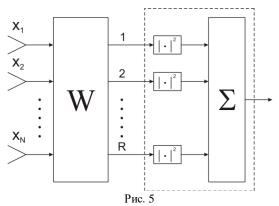
Для определения выигрыша в случае метода фазированной решетки с аподизацией амплитудного распределения (оптимальный линейный метод) необходимо решить задачу по поиску собственных значений λ_i и собственных векторов матрицы $\mathbf{R}_{\mathrm{Noise}}^{-1}\mathbf{R}_{\mathrm{S}}$:



Метод субапертурной обработки (метод подрешеток см. схему на рис. 4) — квадратичный метод, заключается в том, что AP делится нацело на подрешетки длиной $N_{\rm SUB}$, каждая из которых фазируется в направлении угла θ , а затем вся совокупность подрешеток обрабатывается квадратично и происходит некогерентное сложение. Выражение для выигрыша при квадратичной обработке:

$$G_{\text{SUB}} = \sigma_{\text{s}}^{-2} \sigma_{\text{Noise}}^2 \frac{\text{Sp}(\text{AR}_{\text{S}})}{\text{Sp}^{1/2}((\text{AR}_{\text{Noise}})^2)},$$
(4)

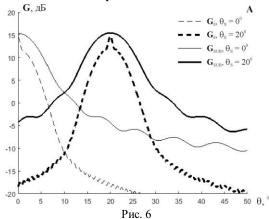
где $\mathrm{Sp}(\cdots)$ – след матрицы; \mathbf{A} – матрица обработки сигнала на AP, в случае субаперурной обработки состоит из матриц обработки сигнала на подрешетках $\mathbf{A} = \mathrm{diag}(\mathbf{A}_1,\cdots,\mathbf{A}_b\cdots,\mathbf{A}_{N/N_{\mathrm{SUB}}})$, $\mathbf{A}_l = \mathbf{W}_{\mathrm{SUB}}^+ l \mathbf{W}_{\mathrm{SUB}} l$, $\mathbf{W}_{\mathrm{SUB}} l$,



Оптимальный квадратичный метод (схема на рис. 5) осуществляется путем формирования оптимальной весовой матрицы $\mathbf{A} = \mathbf{W}^+\mathbf{W}$. Определение выигрыша G_{OPT} достигается через решение задачи на собственные значения λ_i и собственные вектора матрицы $\mathbf{R}_{\mathrm{Noise}}^{-1}\mathbf{R}_{\mathrm{S}}$. При этом выигрыш можно записать как через матрицы когерентности, так и через собственные значения:

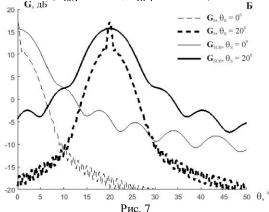
$$G_{\mathrm{OPT}} = \sigma_{\mathrm{s}}^{-2} \sigma_{\mathrm{Noise}}^2 \mathrm{Sp}^{1/2} \left(\left(\mathbf{R}_{\mathrm{Noise}}^{-1} \mathbf{R}_{\mathrm{S}} \right)^2 \right)$$
 или $G_{\mathrm{OPT}} = \sigma_{\mathrm{s}}^{-2} \sigma_{\mathrm{Noise}}^2 \sqrt{\sum_i \lambda_i^2}$. (5)

Результаты численного моделирования и выводы



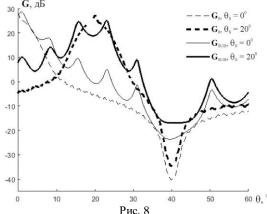
Численное моделирование проведено для AP длиной N = 128 с межэлементным расстоянием d=5 м, при настройке AP на длину волны $\lambda=10$ м. В начале изучена "иерархия" методов обработки приемного сигнала на фоне белого шума (ОСШ $\sigma_s^2\sigma_{\rm wn}^{-2}=-6$ дБ) в зависимости от углового положения источника ($\theta_S=0^0$ и $\theta_S=20^0$) при разных когерентных свойствах входного сигнала. На рис. 6 продемонстриро-

ваны выигрыши фазированной и субапертурной ($N_{\rm SHB} = 16$) обработки в случае малого значения уровня когерентности ($\delta_S = 0.1$) и дисперсии угла $\sigma_{S\theta}^2$ прихода сигнала эквивалентной длине когерентности рассеянной компоненты $N_{\text{Scor}} = 10$. Размер подрешетки ($N_{\rm SUB} \approx 1.5 N_{\rm Scor}$) выбран не случайно и определен ранее нами оптимальным для такого сигнала. Масштабы когерентности сигнала влияют на $G_0(\theta)$ поразному: повышение уровня остаточной когерентности $\delta_{\rm S}$ увеличивает значение выигрыша в направлении на источник, становятся заметны боковые максимумы диаграммы направленности (ДН); снижение эффективной длины когерентности N_{Scor} сглаживает зависимость, увеличивает ширину главного лепестка. Показано, что субапертурная обработка остается квазиоптимальной при увеличении среднего угла пеленга на сигнал, несмотря на рост длины когерентности рассеянной компоненты и уширения главного лепестка подрешеток и всей АР (эффективное уменьшение числа элементов). Выигрыш для линейной обработки с аподизацией составил примерно 14.5 дБ ($G_0 \approx G_{LIN}$), а для оптимальной квадратичной – 16.4 дБ, что лишь на 1 дБ выше субапертурной. При незначительном увеличении уровня $\delta_{\rm S} = 0.3$ (больше порогового значения $\delta_{\text{Snopor}} \approx 0.16$) показана смена эффективности методов (рис. 7): субапертурная обработка ($G_{\text{SUB}} \approx 15.6\,$ дБ) даже в случае оптимального размера подрешеток проигрывает стандартной фазированной обработке ($G_0=17\,$ дБ), которая становится практически оптимальной ($G_{\text{LIN}} \approx 17 \, \text{дБ}, G_{\text{OPT}} = 17.5 \, \text{дБ}$).



При наличии сильной интенсивной помехи (ОСШ $\sigma_s^2 \sigma_n^{-2} = -20$ дБ, см. рис. 8), приходящей с угла $\theta_N = 40^0$, зависимость выигрыша в случае малого значения когерентной компоненты качественно изменяется. Дисперсия угла флуктуации прихода помехового поля меньше ($N_{Ncor} = 30$), чем у сигнала, а уровень остаточной когерентности выбран таким же ($\delta_N = \delta_S = 0.1$). Боковые максимумы ДН помехи снижают уровень выигрыша при фазированной и субапертурной обработке, что может привести к смене иерархии квазиоптимальных методов. Тем не менее, при субапертурной обработке, несмотря на потери выигрыша при настройке подрешеток на средний угол прихода сигнала (если пеленг определить удастся), значение выигрыша в целом меньше зависит от наличия помехи, чем у выигрыша фазированной обработки. Оба

метода по эффективности практически не уступают линейной обработке с аподизацией ($G_{\rm LIN} \approx 28.7$ дБ), и проигрывают оптимальной обработке на 2 дБ.



Таким образом, в данной работе на примере численного моделирования показана смена иерархии эффективности рассмотренных методов пространственной обработки сигнала, описываемого двухмасштабной моделью пространственной когерентности, в зависимости от совокупности параметров, к которым относятся: параметры сигнала и помехи (длина когерентности, величина "остаточной" когерентности, средний угол пеленга на источник, дисперсия флуктуаций угла прихода), геометрические размеры АР и размер её подрешетки.