СРАВНИТЕЛЬНЫЙ АНАЛИЗ КВАЗИОПТИМАЛЬНЫХ МЕТОДОВ ПРОСТРАНСТВЕННОЙ ОБРАБОТКИ ЧАСТИЧНО-КОГЕРЕНТНОГО СИГНАЛА, ПРИНИМАЕМОГО НА ФОНЕ ИНТЕНСИВНОЙ ПОМЕХИ

А.И. Малеханов ^{1,2)}, А.В. Смирнов¹⁾

¹⁾ Институт прикладной физики РАН ²⁾ ННГУ им. Н.И. Лобачевского

Аннотация

В этой работе проводится сравнительный анализ эффективности рассмотренных ранее методов пространственной обработки сигнала (Труды 22-ой научной конференции по радиофизике) на фоне изотропного шума с интенсивной частично-когерентной помехой, описываемой той же двухмасштабной моделью ФПК. Источники сигнала и помехи расположены в разных углах по отношению к центру АР. Показана смена "иерархии" методов обработки в зависимости от совокупности параметров задачи: длины когерентности, величины "остаточной" когерентности, среднего угла пеленга на источники сигнала и помехи, дисперсии флуктуаций углов прихода.

Постановка задачи и основные уравнения

Рис. 1

Рис. 2

Ненаправленный удаленный излучатель акустического поля находится под некоторым углом θ_S по отношению к нормали линейной AP. Помимо полезного сигнала приемная AP принимает также изотропный шум (белый шум) и поле интенсивной удаленной помехи размещенной в угле θ_N (Рис. 1). Линейная AP представляет собой эквидистантно расположенный набор (N) из N приемных элементов вдоль прямой линии с межэлементным расстоянием $d = \lambda/2$. Средняя мощность сигнала, белого шума, помехи на входе единичного элемента AP будет соответственно σ_s^2 , σ_{wn}^2 и σ_n^2 . Критерием эффективности метода пространственной обработки является коэффициент усиления антенны G (от англ. "gain" - выигрыш), который определяется как отношение выходного отношения сигнал/шум (ОСШ) на AP к входному ОСШ на отдель-

ном элементе. Универсальное выражение для выигрыша при линейной пространственной обработке (схема на рис. 2) будет записано как:

$$G_0 = \sigma_{\rm s}^{-2} \sigma_{\rm Noise}^2 \frac{\mathbf{W}^+ \mathbf{R}_{\rm s} \mathbf{W}}{\mathbf{W}^+ \mathbf{R}_{\rm Noise} \mathbf{W}}, \ \sigma_{\rm Noise}^2 = \sigma_{\rm wn}^2 + \sigma_{\rm n}^2 \tag{1}$$

где $\mathbf{R}_{S} = \langle \mathbf{ss}^{+} \rangle$ ($\mathbf{R}_{Noise} = \langle \mathbf{nn}^{+} \rangle$) – матрица пространственной когерентности сигнального **s** (шумового **n**) поля на входе АР, **W** – весовой вектор, "+" – означает эрмитово сопряжение, (...) – означает усреднение по времени. Эффективность стандартной обработки фазированной антенны сильно зависит от угла прихода сигнала $\theta_{\rm S}$ и помехи θ_N , угла сканирования θ . Амплитудно-фазовое распределение для стандартной схемы обработки фазированной АР, которая отвечает фазированному накоплению сигнала по элементам, задается в виде распределения поля на антенне, сопряженного полю падающей плоской волны с некоторого угла θ с волновым числом $k: \mathbf{W}(\theta) =$ $\exp\{ikd(N-1)\sin\theta\}$. При дальнем распространении сигнала (помехи) сквозь случайно-неоднородную среду, матрицу пространственной корреляции можно представить как сложение матриц, отвечающих за когерентную и некогерентную компоненту поля на входе АР. Когерентная компонента поля \mathbf{R}_{SC} (\mathbf{R}_{NC}) характеризуется уровнем "остаточной" когерентности δ_{S} (δ_{N}), зависящим от дальности трассы распространения (аналогия с рассмотренной ранее эвристической экспоненциальной моделью – рис. 3). Считаем, что угол пеленга на излучатель сигнала (помехи) меняется в некотором диапазоне, характеризующийся значением среднего угла прихода $\theta_{\rm S}$ ($\theta_{\rm N}$) и дисперсией угла прихода $\sigma_{\rm S\theta}^2$ ($\sigma_{\rm N\theta}^2$). Используя известную модель плоской волны с флуктуирующим углом прихода, получим матрицу когерентности сигнала (помехи) описывающую рассеянную компоненту поля R_{SH} (R_{NH}) и полную матрицу когерентности:

$$R_{S} = R_{SC} + R_{SH} = \sigma_{s}^{2} \delta_{S} G_{S} J G_{S}^{+} + \sigma_{s}^{2} (1 - \delta_{S}) G_{S} \widetilde{K}_{S} G_{S}^{+},$$

$$R_{Noise} = R_{WN} + R_{N} = \sigma_{WN}^{2} I + R_{NC} + R_{NH},$$

$$\widetilde{K}_{S(N)ij} = \exp\left\{-\left(k(i - j)d\sigma_{S(N)\theta}\cos\theta_{S(N)}\right)^{2}/2\right\},$$
(2)

где I – единичная матрица, J – матрица единиц, $G_S(G_N)$ – диагональная матрица, элементы которой представляют вектор функции Грина $g_S(g_N)$, описывающей распространение поля от излучателя до элемента AP $g_{S(N)} = \exp\{ikd(N-1)\sin\theta_{S(N)}\}$.

Для определения выигрыша в случае метода фазированной решетки с аподизацией амплитудного распределения (оптимальный линейный метод) необходимо решить задачу по поиску собственных значений λ_i и собственных векторов матрицы $\mathbf{R}_{\text{Noise}}^{-1}\mathbf{R}_{s}$:

(3)

Метод субапертурной обработки (метод подрешеток см. схему на рис. 4) – квадратичный метод, заключается в том, что АР делится нацело на подрешетки длиной N_{SUB} , каждая из которых фазируется в направлении угла θ , а затем вся совокупность подрешеток обрабатывается квадратично и происходит некогерентное сложение. Выражение для выигрыша при квадратичной обработке:

$$G_{\rm SUB} = \sigma_{\rm s}^{-2} \sigma_{\rm Noise}^2 \frac{\rm Sp(AR_{\rm s})}{\rm Sp^{1/2}((AR_{\rm Noise})^2)},$$
(4)

где Sp(…) – след матрицы; **A** – матрица обработки сигнала на AP, в случае субаперурной обработки состоит из матриц обработки сигнала на подрешетках **A** = diag($\mathbf{A}_1, \dots, \mathbf{A}_b, \dots, \mathbf{A}_{N/N_{\text{SUB}}}$), $\mathbf{A}_l = \mathbf{W}_{\text{SUB } l}^+ \mathbf{W}_{\text{SUB } l}$, $\mathbf{W}_{\text{SUB } l}(\theta) = \exp\{ikd(\mathbf{N}_{\text{SUB}} - 1)\sin\theta\}$.

Оптимальный квадратичный метод (схема на рис. 5) осуществляется путем формирования оптимальной весовой матрицы $\mathbf{A} = \mathbf{W}^+ \mathbf{W}$. Определение выигрыша G_{OPT} достигается через решение задачи на собственные значения λ_i и собственные вектора матрицы $\mathbf{R}_{\text{Noise}}^{-1} \mathbf{R}_{\text{S}}$. При этом выигрыш можно записать как через матрицы когерентности, так и через собственные значения:

$$G_{\rm OPT} = \sigma_{\rm s}^{-2} \sigma_{\rm Noise}^2 {\rm Sp}^{1/2} \left(\left({\bf R}_{\rm Noise}^{-1} {\bf R}_{\rm S} \right)^2 \right)$$
или $G_{\rm OPT} = \sigma_{\rm s}^{-2} \sigma_{\rm Noise}^2 \sqrt{\sum_i \lambda_i^2}.$ (5)

Результаты численного моделирования и выводы

Численное моделирование проведено для AP длиной N = 128 с межэлементным расстоянием d = 5 м, при настройке AP на длину волны $\lambda = 10$ м. В начале изучена "иерархия" методов обработки приемного сигнала на фоне белого шума (ОСШ $\sigma_s^2 \sigma_{wn}^{-2} = -6$ дБ) в зависимости от углового положения источника ($\theta_s = 0^0$ и $\theta_s = 20^0$) при разных когерентных свойствах входного сигнала. На рис. 6 продемонстриро-

ваны выигрыши фазированной и субапертурной (N_{SUB} = 16) обработки в случае малого значения уровня когерентности ($\delta_{\rm S}=0.1$) и дисперсии угла $\sigma_{\rm S\theta}^2$ прихода сигнала эквивалентной длине когерентности рассеянной компоненты $N_{\text{Scor}} = 10$. Размер подрешетки ($N_{\rm SUB} \approx 1.5 N_{\rm Scor}$) выбран не случайно и определен ранее нами оптимальным для такого сигнала. Масштабы когерентности сигнала влияют на $G_0(\theta)$ поразному: повышение уровня остаточной когерентности δ_S увеличивает значение выигрыша в направлении на источник, становятся заметны боковые максимумы диаграммы направленности (ДН); снижение эффективной длины когерентности N_{Scor} сглаживает зависимость, увеличивает ширину главного лепестка. Показано, что субапертурная обработка остается квазиоптимальной при увеличении среднего угла пеленга на сигнал, несмотря на рост длины когерентности рассеянной компоненты и уширения главного лепестка подрешеток и всей АР (эффективное уменьшение числа элементов). Выигрыш для линейной обработки с аподизацией составил примерно 14.5 дБ ($G_0 \approx G_{LIN}$), а для оптимальной квадратичной – 16.4 дБ, что лишь на 1 дБ выше субапертурной. При незначительном увеличении уровня $\delta_{\rm S}=0.3$ (больше порогового значения $\delta_{\text{Snonor}} \approx 0.16$) показана смена эффективности методов (рис. 7): субапертурная обработка (G_{SUB}≈ 15.6 дБ) даже в случае оптимального размера подрешеток проигрывает стандартной фазированной обработке (G₀ = 17 дБ), которая становится практически оптимальной ($G_{LIN} \approx 17 \, \text{дБ}, G_{OPT} = 17.5 \, \text{дБ}$).

При наличии сильной интенсивной помехи (ОСШ $\sigma_s^2 \sigma_n^{-2} = -20$ дБ, см. рис. 8), приходящей с угла $\theta_N = 40^0$, зависимость выигрыша в случае малого значения когерентной компоненты качественно изменяется. Дисперсия угла флуктуации прихода помехового поля меньше ($N_{Ncor} = 30$), чем у сигнала, а уровень остаточной когерентности выбран таким же ($\delta_N = \delta_S = 0.1$). Боковые максимумы ДН помехи снижают уровень выигрыша при фазированной и субапертурной обработке, что может привести к смене иерархии квазиоптимальных методов. Тем не менее, при субапертурной обработке, несмотря на потери выигрыша при настройке подрешеток на средний угол прихода сигнала (если пеленг определить удастся), значение выигрыша в целом меньше зависит от наличия помехи, чем у выигрыша фазированной обработки. Оба

метода по эффективности практически не уступают линейной обработке с аподизацией ($G_{LIN} \approx 28.7 \text{ дБ}$), и проигрывают оптимальной обработке на 2 дБ.

Таким образом, в данной работе на примере численного моделирования показана смена иерархии эффективности рассмотренных методов пространственной обработки сигнала, описываемого двухмасштабной моделью пространственной когерентности, в зависимости от совокупности параметров, к которым относятся: параметры сигнала и помехи (длина когерентности, величина "остаточной" когерентности, средний угол пеленга на источник, дисперсия флуктуаций угла прихода), геометрические размеры АР и размер её подрешетки.